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Longitudinal instability for a purely inductive wake function
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~Received 5 April 1999!

A purely inductive wake function was the only known case where a solution of the Haissinski equation did
not exist beyond a certain threshold. This is due to the ill-defined treatment of the wake function. The solution
is proved to exist beyond the threshold, if we define the wake function physically. The threshold of the stability
for the solution exists but is lower than the former ‘‘threshold.’’@S1063-651X~99!13808-X#

PACS number~s!: 41.75.2i
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Recently, the demand for shorter bunches becomes
ous for the better performance ofe1e2 colliding rings, high
brightness light sources, the free electron lasers, etc. A b
understanding of the bunch instability becomes more imp
tant.

It was believed that the Haissinski equation@1# with a
purely inductive wake function had no solutions beyond
threshold@2#. However, this was shown to come from a
ill-defined treatment of this wake function@3#. By introduc-
ing a physical regularization of its singularity, we can pro
the existence of the solution. Some authors claim that
threshold of the existence of the Haissinski equation
physical meaning. That is, beyond the threshold, the bunc
unstable. This argument is apparently wrong. The existe
of a stationary solution and its stability are not the same
this paper, we show that the existence of a stationary solu
and its stability are not the same, and that the threshold o
existence of the Haissinski equation without regularizat
has no physical meaning.

This case is of practical importance: wake functions
the modern storage and damping rings tend to be pu
inductive @4#, because their vacuum chambers tend to
smooth. They contain small discontinuities only, such
shallow steps, transition masks and bellows, etc.

Electrons in an accelerator are enclosed in me
~vacuum pipe, the RF cavities, etc.!, and interact with their
environment. This effect is represented by the wake field@2#.
The wake field acting on an electron is determined by
distribution of electrons ahead of it. At the same time,
distribution of electrons is influenced by the wake fie
Hence, to determine the distribution function, one sho
solve coupled nonlinear equations. The single-particle eq
tions of motion are as follows:
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Here, the variables̄, and the dimensionless parametersj and
p are defined as
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wherec is the velocity of light,e is the electric charge of the
electron,L is the total length of the pipe structure in whic
the wake field is generated,E0 is the reference energy of th
beam,N is the number of electrons in a bunch,T0 is the
revolution period of the beam,t is the time displacemen
between an electron and the reference synchronous par
e is the relative energy (E2E0)/E0 with E being the electron
energy,se is the nominal rms relative energy spread,vs is
the synchrotron oscillation frequency,a is the momentum
compaction factor, ands is the longitudinal coordinate alon
the ring. The second term of Eq.~2! is the retarding force
seen by a particle atj due to the longitudinal wake force
which is produced by all the particles in front of it;r~j! is the
particle density at locationj.

In the presence of radiation, two more parameters are n
essary:b is the damping coefficient andD5bse

2 is the dif-
fusion coefficient representing the amount of quantum ex
tation due to photon emission. The dynamics with radiat
can be described by the Fokker-Planck equation@5# for the
phase-space particle distributionc(j,p,s̄).
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The static solution is given by

c0~j,p!5expS 2
p2

2 D r~j!, ~5!

r~j!5A expS 2
j2

2
1E

j

`

dj8V~j8! D , ~6!

V~j!5E
j

`

dj8r~j8!w~j82j!, ~7!

w~j82j!52
e2LN

vsseT0E0
W~j82j!. ~8!
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Equation~6! is the Haissinski equation@1# ~A is the normal-
ization constant where*r dj51). Sincer~j! depends only
on r(j8) for j,j8, and we know

r~j!;A expS 2
j2

2 D , j˜` ~9!

Eq. ~6! can be integrated from the head of the bunch to
tail for a given valueA @6#. Let us call the result of such a
integrationr(j;A) and define the ‘‘charge’’Q as

Q5Q~A!5E
2`

`

r~j;A!dj. ~10!

If a valueA exists such thatQ(A)51, it gives the solution of
the Haissinski equation. Usually, we find the solution of E
~10! numerically.

A purely inductive wake function is written as

w~j!5Sd8~j!. ~11!

This violates the causality as defined in Ref.@2#. It seems
reasonable to replaced8 by

FIG. 1. Solutions of Eq.~13! with the boundary condition Eq
~9! at a50.1 and S52 for Q50.7 ~—!, Q50.85 (222), Q
50.98 (2•••2•••2), andQ51.049 (2•2•2).
e

.

d8~j!˜
d~j!2d~j2a!

a
. ~12!

The d8 wake function is regained whena˜0. Note thata
must be positive in order to satisfy the causality condition

According to Eqs.~6! and ~12!, we obtain

r8

r
52j1

S

a
@r~j1a!2r~j!#. ~13!

Whena is small andS is smaller than its thresholdSmax
.1.55 @2,3#, the solution of Eq.~13! can be well approxi-
mated by

ln r2Sr52 1
2 j21 ln A, ~14!

whereA is determined by a normalization condition. Whena
is small andS is larger than its thresholdSmax.1.55, we
numerically obtain its solution. In Fig. 1, we show the sol
tion manifold for the casea50.1 andS52. We can numeri-
cally confirm that there always exists a solution that satisfi
Q51 for arbitraryS anda @3#. Then, we obtain the solution
with physical and appropriate regularization of this wak
function.

Here, we have to investigate the stability condition. Wh
we consider the case in which the instabilities occur in a tim
shorter than the damping or diffusion time, the instabili
condition can be obtained by the Vlasov equation@7#. The
Vlasov equation can be obtained by puttingb5D50 in Eq.
~4!. We obtain

]

] s̄
c~j,p,s̄!5p

]

]j
c~j,p,s̄!2@j1V~j!#

]

]p
c~j,p,s̄!.

~15!

Following the method of Oide and Yokoya@6,8#, the stability
of c(j,p,s̄) is examined by a linear perturbation. We expan
FIG. 2. ~Left! Frequencyv(J) as a function ofJ at S52 anda50.1 and~right! at S51.5 anda50.1.
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FIG. 3. ~Left! Re@m# spectrum and~right! Im@m# spectrum ata50.1.
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c(j,p,s̄) around its static solution asc(j,p,s̄)5c0(j,p)
1c1(j,p,s̄). The first-order terms ofc1(j,p,s̄) can be writ-
ten as

]

] s̄
c15p

]

]j
c12@j1V~j!#

]

]p
c12V1~j,s̄!

]c0

]p
,

~16!

whereV1(j,s̄) is defined as a wake potential, which is i
duced byc1.

In order to solve Eq.~16!, we introduce the action-angl
variables (J,f). Since the HamiltonianH depends only onJ,
Eq. ~16! is rewritten as follows:

]

] s̄
c15v~J!

]

]f
c11pV1~j,s̄!c0~J!, ~17!

wherev(J)5df/ds̄5]H/]J and]c0 /]p52pc0. We se-
lect the origin off as thej axis. We now expandc1 by the
orthogonal mode as follows:

c15(
nm

mv~Jn!iAc0DJn~Cnm cosmf

1Snm sinmf!Dn~J!exp~2 im s̄!, ~18!

where we introduced the functionDn(J), which has the
value 1/DJn in the strip around thenth mesh pointJ5Jn
with thicknessDJn , and zero outside.

Substituting Eq.~18! into Eq. ~17!, we obtain the matrix
equation

2m2Cnm52 (
n8m8

Mnmn8m8Cn8m8 ~19!

with
Mnmn8m85m2vn
2dnn8dmm8

2
mm8vnvn8Ac0~Jn!DJnAc0~Jn8!DJn8

p

3E
0

2pE
0

2p

cosmf cosm8f8F„q~Jn8 ,f8!

2q~Jn ,f!…df df8, ~20!

wherednn8 is the Kronecker delta andF is a primitive func-
tion that satisfiesF8(j)5w(j). When eigenvalues of this
matrix are negative or complex, the system becomes
stable. It is generally difficult to study the stability conditio
for the general wake function in an analytical way. It is us
ally studied numerically@6,8,9#.

In order to calculate the matrixM for a purely inductive
wake function in Eq. ~20!, we select S/a3@u(j)2u(j
2a)# as a primitive functionF. Further, we need to know

FIG. 4. Sins-a relation.
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how the HamiltonianH depends on the action variableJ. In
this system the HamiltonianH(j,p) for the single-particle
motion in the bunch is described as follows:

H~j,p!5
p2

2
1

j2

2
2SE

j

`

dj8
r~j8!2r~j81a!

a
. ~21!

The potential term is obtained numerically by integrating
static solution. According to the definition of the action va
ableJ,

J5
2

2pEA2S H2
j2

2
1SE

j

`

dj8
r~j8!2r~j81a!

a D dj,

~22!

which represents the relation betweenJ and H. The fre-
quencyv(J) is obtained by]H/]J. The behavior ofv(J) is
shown in Fig. 2.
h

e

e

Figure 3 represents the spectra of the eigenvaluesm ~the
square root of the eigenvalues ofM!. The threshold ‘‘Sins’’ is
calculated by square-root fitting. In this case the instabi
appears aroundS>Sins.1.608 72 with a50.1. Figure 4
represents howSins depends ona. This suggests that the
thresholdSmax is different fromSins .

This numerical analysis suggests that with physical a
appropriate regularization of this wake function, the soluti
exists. Further, a numerical analysis shows that there
(Sins) beyond which the solution becomes unstable. T
value of (Sins) is lower than the unphysical threshold (Smax).
This means that the nonexistence of the solution for
Haissinski equation with the nonregularized purely induct
wake function has no physical meaning.
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