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Longitudinal instability for a purely inductive wake function
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A purely inductive wake function was the only known case where a solution of the Haissinski equation did
not exist beyond a certain threshold. This is due to the ill-defined treatment of the wake function. The solution
is proved to exist beyond the threshold, if we define the wake function physically. The threshold of the stability
for the solution exists but is lower than the former “thresholfiS1063-651X99)13808-X]

PACS numbds): 41.75—i

Recently, the demand for shorter bunches becomes senivherec is the velocity of light,e is the electric charge of the
ous for the better performance ef e~ colliding rings, high  electron,L is the total length of the pipe structure in which
brightness light sources, the free electron lasers, etc. A betténe wake field is generateB, is the reference energy of the
understanding of the bunch instability becomes more imporbeam, N is the number of electrons in a bunchy is the
tant. revolution period of the beamy is the time displacement

It was believed that the Haissinski equatifftf with a  between an electron and the reference synchronous particle,
purely inductive wake function had no solutions beyond ae is the relative energyl{ — E)/Ey with E being the electron
threshold[2]. However, this was shown to come from an energy,o, is the nominal rms relative energy spread, is
ill-defined treatment of this wake functid8]. By introduc-  the synchrotron oscillation frequency, is the momentum
ing a physical regularization of its singularity, we can provecompaction factor, andis the longitudinal coordinate along
the existence of the solution. Some authors claim that théhe ring. The second term of E€R) is the retarding force
threshold of the existence of the Haissinski equation haseen by a particle a§ due to the longitudinal wake force,
physical meaning. That is, beyond the threshold, the bunch iwhich is produced by all the particles in front of jit(¢) is the
unstable. This argument is apparently wrong. The existencparticle density at locatiod.
of a stationary solution and its stability are not the same. In In the presence of radiation, two more parameters are nec-
this paper, we show that the existence of a stationary solutiogssary:b is the damping coefficient and=bo? is the dif-
and its stability are not the same, and that the threshold of thigision coefficient representing the amount of quantum exci-
existence of the Haissinski equation without regularizationation due to photon emission. The dynamics with radiation
has no physical meaning. can be described by the Fokker-Planck equaf@jnfor the

This case is of practical importance: wake functions forphase—space particle distributi(mg,p,?).
the modern storage and damping rings tend to be purely
inductive [4], because their vacuum chambers tend to be

smooth. They contain small discontinuities only, such as 9% _ iw+“_bi o - e’LN
shallow steps, transition masks and bellows, etc. Js pag wg Ip P wso ToEq
Electrons in an accelerator are enclosed in metals
(vacuum pipe, the RF cavities, etcand interact with their S ) d aD 92
environment. This effect is represented by the wake fi2]d X L dé'p(§W(E' = §) %'//“L — ﬁ’p'
The wake field acting on an electron is determined by the ®s0e 0P
distribution of electrons ahead of it. At the same time, the (4)
distribution of electrons is influenced by the wake field.
Hence, to determine the distribution function, one should The static solution is given by
solve coupled nonlinear equations. The single-particle equa-
tions of motion are as follows: p2
¢0(§:p):eXF{ - 7)P(§)1 (5)
2 M
ds° ¢ 2
=Aex ——+fd’V 1, 6
§ o« LN f’d' - 2 p(é) p( 5 gg(m) (6)
d—gp——g§+m . E'p(ENW(E ). (2
Here, the variabls, and the dimensionless parameté@and V()= L d&'p(EHW(E" =), @
p are defined as
— o s € 3 , _ e’LN WE g
s=—_-5, §=a067', p__0_6' 3 w(é —f)——m (§'=9). (8)
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10 o(§)—d(é—a)
86— — (12
0.8
0.6 “‘ The &' wake function is regained whean— 0. Note thata
o i must be positive in order to satisfy the causality condition.
a i According to Egs(6) and(12), we obtain
0.4 e
z"/ \ P’ S
0.2 / \ L= ErgleEra—p(d)] (13
0
42 0 2 4 Whena is small andSis smaller than its thresholf,, .«
g ~1.55[2,3], the solution of Eq(13) can be well approxi-
FIG. 1. Solutions of Eq(13) with the boundary condition Eq. mated by
(9) at a=0.1 andS=2 for Q=0.7 (—), Q=0.85(——-), Q
=098 (== =), andQ=1.049 (~-—-— ) Inp—Sp=— 3 £2+InA, (14

Equation(6) is the Haissinski equatiofi] (A is the normal-
ization constant wher¢p dé=1). Sincep(¢) depends only
onp(¢') for €<¢’, and we know

whereA is determined by a normalization condition. Wreen

is small andS is larger than its threshol&,,,,=1.55, we

numerically obtain its solution. In Fig. 1, we show the solu-
2 tion manifold for the casa=0.1 andS=2. We can numeri-

p(&)~A exp{ - ?) , E€— (9 cally confirm that there always exists a solution that satisfies

Q=1 for arbitrarySanda [3]. Then, we obtain the solution

é/vith physical and appropriate regularization of this wake

function.

Here, we have to investigate the stability condition. When
we consider the case in which the instabilities occur in a time
o shorter than the damping or diffusion time, the instability
Q:Q(A)ZJ p(&A)dE. (100 condition can be obtained by the Vlasov equati@h The

o Vlasov equation can be obtained by putting D=0 in Eq.
(4). We obtain

Eq. (6) can be integrated from the head of the bunch to th
tail for a given valueA [6]. Let us call the result of such an
integrationp(¢;A) and define the “charge’Q as

If a valueA exists such tha®(A) =1, it gives the solution of
the Haissinski equation. Usually, we find the solution of Eq.

(10) numerically. d — d — d —
A purely inductive wake function is written as a—gll/(f,p,s): &—§¢(§,p,5)—[§+V(§)]%w(é,p,s).
W(£)=S5'(8). (1D (19
This violates the causality as defined in Rgd]. It seems  Following the method of Oide and Yokoy#,8], the stability
reasonable to replac& by of y(&,p,s) is examined by a linear perturbation. We expand
2.5 2.5
3
\
2 \‘ 2
»
:
* \
1.5 X\ 1.5 *x
.
3 . 3
1 $00¢se0essesssee 4
0.5 0.5
0 0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
J J

FIG. 2. (Left) Frequencyw(J) as a function of] at S=2 anda=0.1 and(right) at S=1.5 anda=0.1.
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FIG. 3. (Left) Re u] spectrum andright) Im[«] spectrum ag=0.1.

W(£,p,9) around its static solution a$(§,&§)=¢0(§,p)
+1(€,p,S). The first-order terms of4(&,p,S) can be writ-
ten as

o a p iy
;gl/fl—pa*glffl_[g"‘v(f)]%l/fl_vl(& )E’

(16)

whereV,(&,s) is defined as a wake potential, which is in-
duced by, .

In order to solve Eq(16), we introduce the action-angle
variables (0, ¢). Since the Hamiltoniai depends only o4,
EqQ. (16) is rewritten as follows:

d

7% 7

(7 R
;§¢1:w(J) U1+ pVi(€,8) o(J),

where w(J)=d¢/ds=dH/aJ and dr/Ip= — piyo. We se-
lect the origin of¢ as the¢ axis. We now expands, by the
orthogonal mode as follows:

U= 2 Ma(Jy)i \/i/foAJn(CnmCOanfb

+ S, msinme) A (J)exp(—ius), (19
where we introduced the function,(J), which has the
value 1AJ, in the strip around theith mesh pointJ=J,
with thicknessAJ,,, and zero outside.

Substituting Eq(18) into Eq. (17), we obtain the matrix
equation

7M2Cnm:7 2 Mimrm Cnrme (19
n'm’

with

M nmn’'m’ = mzwﬁ&mr 5mm/

_ mm w,wq \/wo(\]n)AJn\/‘ﬁO(\]n’)AJn’

w

27 (27
xj f cosme cosm’ ¢'F(q(J;,,¢")
0 0

—d(Jn,¢))dode’, (20)
whereé,, is the Kronecker delta anfd is a primitive func-
tion that satisfied'(&)=w(&). When eigenvalues of this
matrix are negative or complex, the system becomes un-
stable. It is generally difficult to study the stability condition
for the general wake function in an analytical way. It is usu-
ally studied numerically6,8,9.

In order to calculate the matrii for a purely inductive
wake function in Eq.(20), we selectS/ax[0(&)— 0(¢
—a)] as a primitive functiorF. Further, we need to know
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FIG. 4. S,,s-a relation.
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how the HamiltoniarH depends on the action variahleln Figure 3 represents the spectra of the eigenvaluéhe
this system the Hamiltoniahl (¢,p) for the single-particle  square root of the eigenvaluesMj. The threshold 'S;,¢" is
motion in the bunch is described as follows: calculated by square-root fitting. In this case the instability

9 .2 . , y appears arounds=S;,;=1.60872 witha=0.1. Figure 4
H(&p)= p_+ g__sf dgrm_ (21) represents hows;,s depends ore. This suggests that the
2 2 ¢ a thresholdS;, . is different fromS;s.

Th ial is obtained ically by i ing th This numerical analysis suggests that with physical and
€ potent_|a term is 0 taine numerically by mtegr_atmg t.eappropriate regularization of this wake function, the solution
static solution. According to the definition of the action vari-

abled exists. Further, a numerical analysis shows that there is
' (Sihs) beyond which the solution becomes unstable. This

2 & = p(&)—p(& +a) value of (S;,¢) is lower than the unphysical threshol8.{(,,) .
J:EJ \/2<H_§+Sf dg’f d¢,
&

This means that the nonexistence of the solution for the
22) Haissinski equation with the nonregularized purely inductive
wake function has no physical meaning.

which represents the relation betweérand H. The fre-

quencyw(J) is obtained byH/3J. The behavior ofv(J) is The authors thank the members of the KEK Accelerator
shown in Fig. 2. Theory Group for their help.
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